
January 2014

Agent-based Computing in
Economics and other Social
Sciences: Prospects and
Opportunities
CABDyN

Rob Axtell
Visiting INET@Oxford, Martin School
On leave, Krasnow Institute for Advanced Study, George Mason University

20th C vs 21st C
Social Science

Homogeneous agents:
the representative agent
a few agent ‘types’
continuum of agent types
single agent institutions
antidote: Kirman [1992]
Rational actors:
complete, reflexive, transitive, continuous,
monotone preferences
scalar value function
max U, max profit, min cost
decision theory, math programming
antidotes: Simon [1956], Kirman [1993]
Well-mixed populations:
centralized information, control
no direct interactions
methodological atomism
antidote: Kirman [1997]
Equilibrium: the ‘Nash’ program
Macro just magnified micro

Heterogeneous agents:
local agent data
homogeneous rules, heterogeneous behavior
heterogeneous rules of behavior
early example: SFI Stock Market
Bounded rationality:
zero-intelligence/‘best reply’/heuristics
adaptive/behavioral/learning models
BDI framework, aspirational models
full-blown cognitive models (e.g., SOAR)
behavioral game theory
example: El Farol model (Arthur)
Networks:
social networks (sociology)
technological networks (computer science)
mathematics of networks (physics)
rational networks (economics)
Disequilibrium at agent level
Macro emerges from micro
‘Big data’ (micro-data)

Revolution in the Social
Sciences:
 Simple vs
Complex
(20th C vs 21st C)

Global information
Scalar value function (utility,
profit, market capitalization)
Rational people, firms
Single decision-maker
(decision theory works)
Mean field (averages work,
variances are finite)
Continuous, smooth math
Equilibrium, fixed points
Markets: law of one price
CS: Top down AI
Centralized control

Local information
Diverse representations,
competing world views
Behavioral agents
Multi-agent institutions
(everything is game theory)
Networks, heavy tails (infinite
variance), extremes
Discrete math, computation
Adaptation, co-evoluiton
Auctions: heterogenous p’s
CS: Distributed AI and MAS
Emergence from bottom up

What are Agent-based Systems?

Population of software agents

Rules for agent-agent interactions

Systematic software engineering with objects

Many ‘flavors’ today:

CS: multi-agent systems (MAS)

ecology: individual-based models (IBMs)

social science: agent-based models (ABMs)

✤

✤

✤

✤

✤

✤

✤

Agents in the Social Sciences

Schelling’s early work (1969-71) concurrent w/Tullock+Campbell
(1970)
Anthropology: SIG on agent-based computing in the AAA
Political science and policy: Axelrod and students, Laver and Sergenti
Sociology: Macy, Hedstrom (Analytical Sociology), Billari (demography)
Geography: Batty and students (Crooks, Torrens): GIS + agents
Epidemiology: EpiSims (Los Alamos), Longini (CDC), MIDAS

(NIH),...
Economics: Tesfatsion, Kirman, Vriend, Duffy, Arifovic, Gallegati,

EURACE project, Delli Gatti, Dawid, Neugart, Page, Tassier, Ussher,...
Finance: LeBaron, Lux, Chiarella, econophysicists, CRISIS project,...
Societies: ESSA, CSSSA, PAAA/PRIMA, MABS/AAMAS,...

✤

✤

✤

✤

✤

✤

✤

✤

✤

What Problems to Agents Solve?

Agent heterogeneity

Bounded rationality

Networks

Agent-level disequilibrium

Multi-level character of social systems...

How ‘more can be different’

✤

✤

✤

✤

✤

✤

Social Systems as Multi-Level
Systems

x(t) x(t+1)

y(t) y(t+1)

y(t)=a(x(t)) y(t+1)=a(x(t+1))

Agent level

Macro level

Social Systems as Multi-Level
Systems

x(t) x(t+1)

y(t) y(t+1)

Given data on
y(t), what can we

say about x(t)?
FALLACY

OF DIVISION

Social Systems as Multi-Level
Systems

x(t) x(t+1)

y(t) y(t+1)

Given data on
y(t), what can we

say about x(t)?

Given data on x(t),
what can we say

about y(t)?

FALLACY

OF DIVISION

FALLACY OF

COMPOSITION

FALLACY OF

COMPOSITION

Flavors of Computational Economics

Numerical economics

Computational finance

System dynamics

Microsimulation

Cellular automata

Agents

✤

✤

✤

✤

✤

✤

Non-Elephants in Economics

Non-Walrasian theory of markets

Non-Coasian theory of the firm

Non-Nash game theory

Non-Lucasian macro

Non-neoclassical policy

✤

✤

✤

✤

✤

Agentization

Take a neoclassical model and build an agent-based version of it;
What can happen?

✤

N
A

I

Agentization

Take a neoclassical model and build an agent-based version of it;
What can happen?

✤

N
A

II

Agentization

Take a neoclassical model and build an agent-based version of it;
What can happen?

✤

N

A

III

Complexity of Markets and
Games

Walras-Arrow-Debreu, Nash
< Brouwer

Brouwer < Sperner

Sperner ∈ PPAD

k-lateral exchange ∈P

If there is a fast algorithm to
compute Walrasian equilibria
then FP = FNP => P = NP =>
no computer system is safe

If P ≠ NP then Walrasian
equilibria are
computationally incredible

✤

✤

✤

✤

✤

✤

M*

Figure 2: Detail showing /3’s computation

sures for the type 1 classes. All reductions we exhibit are
many-one reductions so with this theorem they give inclu-
sions or alternative characterizations of the classes defined
in [Pap94]. All separations we exhibit hold even against Tur-
ing reductions so they show oracle separations between the
Turing closures of the related type 1 search classes and these
separations apply to all generic oracles ([B187], [CIY95].)

2.3 Some simple reductions

It is easy to see that SOURCE. ORSINK <m LEAF, by
ignoring the direction information on the input graph. Also
it is immediate that SOURCE. OR.SINK <m SINK.

It is not hard to see that SINK <m PIGEON: Let G be
the input graph for S1iVK. The corresponding input function
f to PIGEON maps nodes of G as follows. If w is a sink of
G then let f(v) = 0...0; if there is an edge from v to u in
G then let f(v) = u; and if v is isolated in G, let f(v) = v.
Then the the possible answers to PIGEON coincide exactly
with the possible answers to SINK.

Our main results are that all three of these reductions
fail in the reverse direction even when allowing more general
Turing reductions. The containment of the corresponding
type 1 classes (with respect to any oracle) are shown in
Figure 3.

2.4 Equivalent problems

We say that two problems are equivalent if each is reducible
(under <) to the other, and they are many-one equiva-
lent if each is many-one reducible (under <~) to the other.
It is interesting (and also relevant to our separation argu-
ments) that there are several problems many-one equivalent
to LEAF, based on different versions of the basic combinato-
rial lemma “every graph has an even number of odd-degree
nodes.” Strictly speaking, LEAF is based on a special case
of this lemma, where the graph has degree at most two. A
more general problem, denote it ODD, is the one in which
the degree is not two, but bounded by a polynomial in the
length of the input x. That is, a(v) codes a set of polyno-
mially many, as opposed to at most two, nodes, and we are
seeking a node u # 0...0 of odd degree (or 0...0 if that node
is not a leaf).

Another variant of the same lemma is this: “Every graph
with an odd number of nodes has a node with even de-
gree.” To define a corresponding problem, denoted EVEN,

TFNP

(“EL’)

PPA

LSAF.

w
Figure 3: Search class relationships in a generic relativized
world

we would have a(v) again be a polynomial set of nodes, only
now a (o.. .0) = 0. This last condition will essentially leave
node O...0 out of the graph thus rendering the number of
nodes odd. We are seeking a node v # O...0 of even degree
(or 0...0 if that node is not isolated).

In the special case where the graph has maximum degree
one, this version of the lemma is “there is no perfect match-
ing of an odd set of nodes.” An input pair (a, z) now codes
a graph GM(cr, Izl) which is a partial matching. The nodes,
as before, are the nonempt y strings of length Iz I or less, and
there is an edge between nodes u and w iff (i) u # v, (ii)
a(v) = u, (iii) a(u) = v, and (iv) neither u nor v is the
standard node 0...0. Thus O...0 is always unmatched, and
we are seeking a second unmatched (or lonely) node o. This
search problem is denoted LOIWLLY.

Theorem 2: The problems LEAF, ODD, EVEN, and
LONELY are all many-one equivalent.

Proofi To show that LEAF <. hONELY consider an
input (a, x) to LEAF, representing a graph G = G(a, 1x1).
We transform (a, x) to an input (~, xl) to LONELY. We de-
scribe @ implicitly by describing the partial matching G2 =
GM(/3, 1s11). G2 has all nodes of G, plus a copy v’ of each
such node v. We place edges in G2 in such a way that the
leaves of G are precisely the unmatched nodes in G2. If v is
an isolated n“ode in G then there is an edge matching node
v and its copy v’ in G2. If v haa precisely one neighbor u in
G, then v is unmatched in G2 and v’ is matched in G2 with
either u or u’, as explained below. If PJhas two neighbors
u and w in G, with u preceding w lexicographical y, then
there is an edge in G2 between v and either u or u’, and
also an edge in G2 between v’ and either w or w’.

In each case where a choice has been indicated, the cor-
rect choice is determined by applying the rules to the neigh-
bor. Thus if u has precisely one neighbor u in G, then u’
is matched in G2 with u, provided u has two neighbors in
G and v lexicographically precedes the other neighbor, and
otherwise u’ is matched with u’. If v haa two neighbors u
and w in G, with u preceding w lexicographically, then v
is matched in G2 with u, provided u has two neighbors in
G, and v lexicographically precedes the other neighbor, and
otherwise v’ is matched with u’. Similarly for v’ and w or
w’.

Note that for each node v in G2, the mate ~(v) can be
determined with at most four calls to cr. It is each to verify

306

A small corner of the ‘complexity zoo’

Agentization

Take a neoclassical model and build an agent-based version of it;
What can happen?

✤

N

A

IV

Agentization

Take a neoclassical model and build an agent-based version of it;
What can happen?

✤

A
N

V

Computational Economics:
Only Agents use the Whole
Machine

Display

HDD

Network

CPU

RAM

GPU

Econometrics: HDD + CPU
Theory: CPU?
Applied micro: HDD + CPU
Microsimulation: network + CPU
Agents: all RAM, all CPUs, GPU, HDD,
 display, network

3 and 1/2 Policy Successes

Traffic

Epidemiology

Combat

Finance

✤

✤

✤

✤

Sociology of Science, I: Game
Theory, Experimental Economics,
Agents...

Early game theorists (e.g., Nash, Shapley, Shubik, Aumann) mostly
took jobs in mathematics departments (‘50s forward)

Even by the ‘70s little improved (e.g., Peyton Young)
‘Killer app’ for game theory was industrial organization (‘80s)
Nobel for Nash, Harsanyi and Selton in 1994

Early experimental economists (e.g., Smith, Plott, Roth) were similarly
on the fringe of the economics mainstream (‘50s - ‘80s)

Behavioral + experimental papers today appear in major journals
Some big departments still do not have significant lab facilities
Nobel for Smith (and Kahneman) in 2002

Agent models today face comparable barriers...

✤

✤

✤

✤

✤

✤

✤

✤

✤

Sociology II: Why are there so many
theorems in top economics journals?

By analogy, Journal of Fluid Mechanics:

1950s: ~70+% of papers analytical, many have theorems

1980s: <50% analytical, ~25% computational

today: all either computational or mixed experimental + comp.

American Economic Review:

1950s: >50% of papers empirical (not experimental), no theorems

1980s: >50% of papers analytical, minority have theorems

today: >50% of papers have theorems, lemmas, formal claims;
only computational results are econometric with occasional
microsimulation

✤

✤

✤

✤

✤

✤

✤

✤

Economics:
Computational evolution

Data
Theory CE

Data
Theory

NCE

ACE

Agent-based
Economics

Economics: Future?

Data
Theory

NCE

‘Big’
Data

Barriers and Bottlenecks

Realization of large-scale models:

Multi-machine parallelization generically does not work

GPU technology is synchronous, which is problematical...

Identifying models with micro-data:

‘Estimation by simulation’ but function evaluation is expensive

Many sets of parameters may give comparable results

‘Manski critique’

Need new publication ‘technologies: from movies to executable
papers...

✤

✤

✤

✤

✤

✤

✤

✤

